Monotone Quadratic Spline Interpolation

ELI PASSOW

Mathematics Department, Temple University, Philadelphia, Pennsylvania 19122 Communicated by R. Bojanic Received September 17, 1975

1. INTRODUCTION

Let $X = \{x_i\}$, $Y = \{y_i\}$, $-\infty < i < \infty$; $x_{i-1} < x_i$ and $y_{i-1} < y_i$ for all *i*. Let $S_n = S_n(X)$ be the set of splines of degree *n*, having knots at x_i , $-\infty < i < \infty$; i.e., each $f \in S_n$ coincides with a polynomial of degree $\leq n$ on (x_{i-1}, x_i) , $-\infty < i < \infty$, and $f \in C^{n-1}$. The problem of monotone spline interpolation is: What additional conditions on the sequences X and Y will guarantee the existence of an increasing $f \in S_n$ satisfying $f(x_i) = y_i$, $-\infty < i < \infty$?

The similarity in character of this problem to that of cardinal spline interpolation, as studied by Schoenberg [1, 2], is apparent by considering the following typical example of the latter [2]: Let $F_s = \{F(x): F(x) \in C(-\infty, \infty), F(x) = 0(|x|^s) \text{ as } x \to \pm \infty\}$. What conditions on Y will guarantee the existence of a function $f \in S_n \cap F_s$, satisfying $f(i) = y_i, -\infty < i < \infty$? (Note that in this case the interpolation nodes are the integers, while we consider more general nodes.)

The problem of monotone spline interpolation is trivial for S_1 (piecewise linear functions), so we turn our attention to quadratic splines. We obtain sufficient conditions for the existence of an increasing quadratic spline interpolant; we also consider the problem of convex interpolation.

2. The Main Results

Let $s_i = (y_i - y_{i-1})/(x_i - x_{i-1}), -\infty < i < \infty$.

THEOREM 1. Suppose $y_i - y_{i-1} > 0$, $s_i - s_{i-1} > 0$ for all *i*. Then there exists a unique increasing function $f \in S_2$, such that $f(x_i) = y_i$ for all *i*. If, in addition, $s_i - 2s_{i-1} + s_{i-2} \ge 0$ for all *i*, then *f* is convex.

Remark. Note that the conditions $s_i - s_{i-1} > 0$ imply that the data are convex, in the sense that the slopes increase from left to right. The additional conditions, $s_i - 2s_{i-1} + s_{i-2} \ge 0$, guarantee that f is also convex.

ELI PASSOW

Proof. The proof is based on the fact that if $f(x) = ax^2 + bx + c$ has a nonnegative derivative at α and at $\beta > \alpha$, then f is nondecreasing on $[\alpha, \beta]$.

Since $\{s_i\}$ is a monotone and nonnegative sequence, there exists $\gamma \ge 0$ such that $\lim_{n \to -\infty} s_n = \gamma$. Assume, initially, that $\gamma = 0$.

Let f reduce to p_n on $[x_{n-1}, x_n]$, where $p_n(x) = a_n x^2 + b_n x + c_n$, $-\infty < n < \infty$. Then p_1 must satisfy:

$$p_1(x_0) = x_0^2 a_1 + x_0 b_1 + c_1 = y_0, \qquad (1)$$

$$p_1(x_1) = x_1^2 a_1 + x_1 b_1 + c_1 = y_1, \qquad (2)$$

$$p_1'(x_0) = 2x_0 a_1 + b_1 \ge 0, \tag{3}$$

$$p_1'(x_1) = 2x_1a_1 + b_1 \ge 0. \tag{4}$$

Eliminating c_1 from (1) and (2), we obtain $b_1 = s_1 - (x_0 + x_1) a_1$. Substituting in (3) and (4), we obtain two conditions that a_1 must satisfy,

$$-s_{1}/(x_{1}-x_{0}) \leqslant a_{1} \leqslant s_{1}/(x_{1}-x_{0}).$$
 (5)

For n > 1, p_n must satisfy:

$$p_n(x_{n-1}) = x_{n-1}^2 a_n + x_{n-1} b_n + c_n = y_{n-1}$$
(6)

$$p_n(x_n) = x_n^2 a_n + x_n b_n + c_n = y_n,$$
(7)

$$p_{n}'(x_{n-1}) = 2x_{n-1}a_{n} + b_{n} = 2x_{n-1}a_{n-1} + b_{n-1} = p'_{n-1}(x_{n-1}), \quad (8)$$

$$p_n'(x_n) = 2x_n a_n + b_n \ge 0. \tag{9}$$

From (6), (7), and (8) we obtain

$$a_{n} = \frac{1}{(x_{n} - x_{n-1})} [s_{n} - (2x_{n-1}a_{n-1} + b_{n-1})],$$

$$b_{n} = \frac{1}{(x_{n} - x_{n-1})} [(x_{n} + x_{n-1})(2x_{n-1}a_{n-1} + b_{n-1}) - 2x_{n-1}s_{n}].$$
(10)

Thus,

$$2x_na_n + b_n = 2s_n - (2x_{n-1}a_{n-1} + b_{n-1}).$$
⁽¹¹⁾

Using (11) recursively, we obtain

$$2x_n a_n + b_n = 2(s_n - s_{n-1} + \dots + (-1)^n s_2) + (-1)^{n+1} s_1 + (-1)^{n+1} (x_1 - x_0) a_1.$$
(12)

Let $\alpha_0 = \alpha_1 = s_1$ and $\alpha_n = 2(s_n - s_{n-1} + \dots + (-1)^n s_2) + (-1)^{n+1} s_1$, $n = 2, 3, \dots$. Then, by (5), (9), and (12), a_1 must satisfy

$$a_1 \leq \alpha_n/(x_1 - x_0), \qquad n \text{ even},$$

$$a_1 \geq -\alpha_n/(x_1 - x_0), \qquad n \text{ odd}.$$
(13)

Note that $\alpha_n = \alpha_{n-2} + 2(s_n - s_{n-1}) \ge \alpha_{n-2}$. Thus $0 \le \alpha_0 \le \alpha_2 \le \cdots$ and $0 \le \alpha_1 \le \alpha_3 \le \cdots$. Hence, $\cdots \le -\alpha_3 \le -\alpha_1 \le 0 \le \alpha_0 \le \alpha_2 \le \cdots$, so that there certainly exists a_1 satisfying (13).

For n < 1, p_n must satisfy:

$$p_n(x_{n-1}) = x_{n-1}^2 a_n + x_{n-1} b_n + c_n = y_{n-1}, \qquad (14)$$

$$p_n(x_n) = x_n^2 a_n + x_n b_n + c_n = y_n , \qquad (15)$$

$$p_n'(x_n) = 2x_n a_n + b_n = 2x_n a_{n+1} + b_{n+1} = p'_{n+1}(x_n),$$
(16)

$$p_n'(x_{n-1}) = 2x_{n-1}a_n + b_n \ge 0.$$
⁽¹⁷⁾

From (14), (15), and (16), we obtain

$$a_{n} = \frac{1}{(x_{n} - x_{n-1})} [(2x_{n}a_{n+1} + b_{n+1}) - s_{n}]$$

$$b_{n} = \frac{1}{(x_{n} - x_{n-1})} [2x_{n}s_{n} - (x_{n} + x_{n-1})(2x_{n}a_{n+1} + b_{n+1})].$$
(18)

Thus,

$$2x_{n-1}a_n + b_n = 2s_n - (2x_na_{n+1} + b_{n+1}).$$
⁽¹⁹⁾

We now use (19) recursively to obtain

$$2x_{n-1}a_n + b_n = 2(s_n - s_{n+1} + \dots + (-1)^n s_0) + (-1)^{n+1}s_1 + (-1)^n(x_1 - x_0) a_1.$$
(20)

Let $\beta_n = 2(s_n - s_{n+1} + \dots + (-1)^n s_0) + (-1)^{n+1} s_1$, $n = 0, -1, -2\dots$ Then, by (17) and (20), a_1 must also satisfy

$$a_1 \leqslant \beta_n / (x_1 - x_0), \qquad n \text{ odd},$$

$$a_1 \geqslant -\beta_n / (x_1 - x_0), \qquad n \text{ even.}$$
(21)

From the hypotheses of the theorem, $2\sum_{k=0}^{\infty} (-1)^k s_{-k}$ converges to a non-negative number, t. Let

$$a_1 = (s_1 - t)/(x_1 - x_0).$$
(22)

Then $s_1 - t \ge -s_1$, since $2s_1 - t = 2 \sum_{k=-1}^{\infty} (-1)^{k+1} s_{-k} \ge 0$. Thus $-\alpha_1 = -s_1 \le (x_1 - x_0) a_1 \le s_1 = \alpha_0$, so that inequalities (13) are satisfied. Also,

$$(x_1 - x_0) a_1 = s_1 - 2(s_0 - s_{-1} + \dots + s_{2n}) + 2(s_{2n-1} - s_{2n-2} + \dots)$$

= $-\beta_{2n} + 2(s_{2n-1} - s_{2n-2} + \dots),$ (23)

and, similarly,

$$(x_1 - x_0) a_1 = \beta_{2n+1} - 2(s_{2n} - s_{2n-1} + \cdots).$$
(24)

ELI PASSOW

Hence, inequalities (21) are also satisfied, so that conditions (1)–(4), (6)–(9) and (14)–(17) can be fulfilled, and thus a monotone interpolating quadratic spline exists.

To prove uniqueness, notice that $\lim_{n\to\infty} -\beta_{2n} = \lim_{n\to\infty} \beta_{2n+1} = s_1 - t$. Since a_1 must satisfy (21) for all *n*, the choice $a_1 = (s_1 - t)/(x_1 - x_0)$ is the only one possible.

Suppose now that $s_i - 2s_{i-1} + s_{i-2} \ge 0$ for all *i*. From (10), (11), (18), (19), and (22), we obtain $a_n = s_n - 2s_{n-1} + 2s_{n-2} - 2s_{n-3} + \cdots = (s_n - 2s_{n-1} + s_{n-2}) + (s_{n-2} - 2s_{n-3} + s_{n-4}) + \cdots$. Since each term in parentheses is ≥ 0 , we have that $a_n \ge 0$ for all *n*. Hence *f* is convex, and the theorem is proved in the case $\gamma = 0$.

Now suppose $\gamma > 0$. Let $g(x) = \gamma x$ and $\bar{y}_i = y_i - g(x_i)$. Then $\bar{y}_i - \bar{y}_{i-1} = (y_i - y_{i-1}) - \gamma(x_i - x_{i-1}) > 0$ since $s_i \ge \gamma$. Also, $\bar{s}_i - \bar{s}_{i-1} = s_i - s_{i-1} > 0$ and $\lim_{n \to -\infty} \bar{s}_n = 0$, so that we can apply the first part of the theorem. Let $\bar{f} \in S_2$ be the monotone interpolant for the data (x_i, \bar{y}_i) . Then $f(x) = \bar{f}(x) + \gamma x$ is a monotone interpolant for the data (x_i, y_i) , and $f \in S_2$. Moreover, if \bar{f} is convex, then so is f.

Remark. The conditions $s_i - s_{i-1} > 0$ are not necessary. Indeed, other sufficient conditions are $D \ s_i - s_{i-1} < 0$ for all *i*. But the theorem may hold without either of these conditions. For example, let $s_n = 1$ for $n \le 1$, $s_2 = 2$, $s_3 = 4$, and $s_n = 3$ for $n \ge 4$. Then the data are neither convex nor concave, but (13) and (21) will be satisfied if $-1 \le (x_1 - x_0) a_1 \le 1$. On the other hand, if $s_1 = 1$, $s_2 = 4$, $s_3 = 2$, then the data are neither convex nor concave, and (13) cannot be satisfied.

If we consider finite interpolation, at nodes $\{x_i\}_{0}^{k}$, or semi-infinite interpolation, at nodes $\{x_i\}_{0}^{\infty}$, then the interpolating spline will no longer be unique, since a_1 need only satisfy inequalities (13), which are implied by inequalities (5). Thus any value of a_1 satisfying (5) will yield a monotone interpolating quadratic spline. If we specify the value of $f'(x_0)$, then f will be unique. However, we do not have complete freedom in the choice of $f'(x_0)$.

THEOREM 2. Suppose $y_i - y_{i-1} > 0$, $i = 1, 2, ..., and s_i - s_{i-1} > 0$, i = 2, 3, Let y_0' satisfy $0 \leq y_0' \leq 2s_1$. Then there exists a unique monotone function $f \in S_2$, such that $f(x_i) = y_i$, $i = 0, 1, 2, ..., and f'(x_0) = y_0'$. Furthermore, if $0 \leq y_0' \leq s_1$, $y_0' \geq 2s_1 - s_2$ and $s_i - 2s_{i-1} + s_{i-2} \geq 0$, i = 3, 4, 5, ..., then f is convex.

Proof. $f'(x_0) = p_1'(x_0) = 2x_0a_1 + b_1 = s_1 - (x_1 - x_0)a_1$. Since $-s_1 \leq (x_1 - x_0)a_1 \leq s_1$, by (5), we have that $0 \leq p_1'(x_0) \leq 2s_1$. Thus, if $0 \leq y_0' \leq 2s_1$, and if we let $a_1 = (s_1 - y_0')/(x_1 - x_0)$, then f will be uniquely defined and will satisfy $f'(x_0) = y_0'$. If $0 \leq y_0' \leq s_1$, then $a_1 \geq 0$. Also,

from (10), $a_2 = (1/(x_2 - x_1))(s_2 - s_1 - (x_1 - x_0)a_1)$. Since $(x_1 - x_0) a_1 = s_1 - y_0'$, a_2 will be ≥ 0 if $y_0' \ge 2s_1 - s_2$. Again, from (10),

$$a_n = \frac{1}{(x_n - x_{n-1})} (s_n - 2s_{n-1} + \dots + (-1)^n 2s_2 + (-1)^{n+1} s_1 + (-1)^{n+1} (x_1 - x_0) a_1), \quad \text{for} \quad n \ge 3.$$

Hence, if $s_i - 2s_{i-1} + s_{i-2} \ge 0$, i = 3, 4, 5, ..., then $a_n \ge 0$ for $n \ge 3$, so that f is convex.

REFERENCES

- 1. I. J. SCHOENBERG, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167-206.
- 2. I. J. SCHOENBERG, Cardinal interpolation and spline functions. II. Interpolation of data of power growth, J. Approximation Theory 6 (1972), 404-420.